DPDMACS

Michael Patra

patra@lorentz.leidenuniv.nl

There exist many programs for coarse-grained computer simulations, usually
in the framework of DPD (dissipative particle dynamics). Unfortunately, avail-
able programs suffer from two limitations. First, they are not adapted to current
computer architectures, and, second, they use their own proprietary input files,
and learning how to use these programs thus can be very time-consuming.

DPDMACS is specially adapted to current x86-architectures, using handwrit-
ten code with assembler intrinsics for maximal speed. Running in 64 bit can
increase the speed even further. All input and output files are compatible with
the Gromacs suite for atomistic molecular dynamics simulations, thereby min-
imising the effort to learn and use DPDMACS.

I. INSTALLATION

DPDMACS is designed to be used on x64 architectures with the SSE and SSE2 extensions.
This includes the Intel Pentium-4 and the AMD64 cpu’s. Running in 64-bit mode is recom-
manded as this doubles the number of available general-purpose and floating-point regis-
ters. The program can be compiled and run also on other cpu architectures by means of the
xnm_func. h header file but this will severely affect the speed.

Using the Intel C compiler is recommanded but any recent version of GCC will do, at the
expensive of reducing the speed of DPDMACS by about 5 %. Installation is straight-forward:

./configure
nake
nake install

Compiling textstDPDMACS puts every compiler under stress due to its extensive innerloops.
If you need to choose a different compiler because the default compiler fails to compile, you
can specify the compiler in the GQC environment variable:

./configure QG+ usr/1 ocal / bi n/ gcc

The benchnark subdirectory contains a few sample simulations that can be used to check
the correct compilation.

1. USAGE INFORMATION

DPDMACS is designed to be as compatible as possible with the Gromacs suite of programs
for atomistic molecular dynamics. We will shortly summarise the basic setup employed

by Gromacs, please see the Gromacs website W\ gr On&cs. or g for deeper information.
Each simulation needs three different input files:

e initial coordinates (and initial velocities, if so desired). The file name has the extension
.gro

e a “topology” file that describes the forcefield that is to be used for the simulation. File
extension: . top

e an MD parameter that contains information such as the step size or the temperature.
File extension: . nup

The topology file frequently is rather long. For this reason, C preprocessor commands such
as #include can be used to structure the file. It is a convention to put pieces of topologies
into files with the extension .itp .

The result of the simulation is a trajectory file, extension . trr , that contains snapshots of
the coordinates and velocities of all particles during the simulation.

Parsing the .top topology file can take quite a bit of time. For this reason, Gromacs also
creates a binary topology file with the extension . t pr . This file is used by the analysis tools
supplied with the Gromacs suite. For example, you want to compute a mass density profile
from your simulation. The . trr trajectory file will contain the coordinates of the particles
but not their masses — this information, the masses, will then be read by the mass density
calculation program from the . tpr binary topology file.

DPDMACS follows the same approach: It reads in a .gro , a .top and a .ngp file and
will create a .trr and a.tpr file. The format of the input files is identical to the original
Gromacs format, there are just some minor extensions to allow to specify DPD parameters.
In the following, we will describe the format of the input files, first for readers that are already
familiar with Gromacs, and then for readers which are new to this subject.

A. Initial coordinate file (.gro)
1. Readers familiar to Gromacs

The only difference to the way that Gromacs handles this file type is that the atom numbers
are actually checked (to see whether they are consecutive) whereas Gromacs silently ignores
these numbers.

2. Readers new to Gromacs

A simple . gro file looks like this:

Test system
2
1A BL 1 1.000 1.000 1.000

1RA B 2 2.000 7.000 1.000
10. 00000 10. 00000 10. 00000

The first line just specifies some “name” for the system but is ignored otherwise. The second
line gives the total number of particles. Then follows one line per particle.

The first field tells that this is the first molecule of type FQL whereas the second field specifies
the names of the two particles in that molecule, namely BL and B2 . The third field gives the
consecutive number (or index) of the particle. Finally, there are x, y and z coordinate of the
particle in units of nanometres. Optinally, there could three additional fields specifying the
velocities of the particles (in units of nanometres per picosecond).

At the end of the file, the size of the simulation box is given. If there would be two polymers
present instead of just a single one, the file could look like this:

Test system

4
1R BL 1 1. 000 1. 000 1. 000
1R B 2 2.000 7.000 1. 000
2R Bl 3 1. 000 2.000 6. 000
2R B 4 2.000 8. 000 6. 000

10. 00000 10. 00000 10. 00000

The position of the fields is relevant, i. e., whitespace does matter. You thus need to make sure
to insert the correct number of space characters. Using one of the example files as template
can be helpful. If you want to create . gro files from some program, the Fortran formatting
command is

wite(unit=, fm= (152,15 38 3 3R 3’) &
nol ecul eNuntoer , nol ecul eNane, parti cl eNane, &
parti cl eNunfoer , posi ti onX posi ti ony, posi ti onz, &

vel oci tyX vel oci tyy, vel ocityZ

and the C formatting string is

printf("%d%55%5s%6d%8. 3f 98. 3f 98. 3f 98. 3f 98 .3f98 .3f\n ",
nol ecul eNuntoer , nol ecul eNane, parti cl eNane,
particl eNunber, posi ti onx posi ti ony, posi ti onz,

vel oci tyX vel oci tyY, velocityZ);

If you have your coordinates available in some other more-or-less standard file format, you
can try the babel utility, which you can download from ww eyesopen. con babel / ,
or its successor OpenBabel, available from openbabel . sour cef or ge. net . They can
convert from almost any file format to almost any other. In particular, you can use the . Xyz
file format as input which is rather straight forward.

If you are able to create . pdb files in some easy way, you can directly use the utilities from
the Gromacs suite and simply type

editconf -f input.pdb -0 output.gro

4

There is one minor issue when dealing with different file formats: some (like . gro) specify
all positions in units of nanometres whereas others (like . pdb) use Angstrom. Converting
between two such file formats will thus change all numbers by a factor 10. This is precisely
what is needed if you work with “real” systems where all lengths are specified in “real phys-
ical” units, like when each blob of a PEO polymer has a diameter of 0.4 nm. There thus is
no reason for you to do anything special as everything is taken care of automatically. If, on
the other hand, you want to use “generic” units where the diameter of the beads forming a
polymer is simply set to 1, you need to watch out for this factor 10 that appears in the conver-
sion. If you only want to convert between . pdb and . gro , this factor can be taken care of

by edi t conf

editconf -f input.pdo -scale 10 10 10 -0 output.gro
editconf -f input.gro -scale 0.1 0.1 0.1 -o output.pdb

B. Topology file (.top)

1. Readers familiar to Gromacs

Inthe [defaults] section at the very beginning of the topology file, the combination
rule is specified, e. g.,

[defaults]
1 3 no 10 10

Combination rule “1” in Gromacs (geometric mean of cg and cj2) does not make sense for
soft potentials. Combination rules “2” and “3” have the same meaning as in Gromacs, and an
additional combination rule “4” has been introduced for completeness:

rule “2”: a = /a1az o= 1(c1+02)

rule “3”: a = \/aiaz o= ./0102

rule “4”: a = %(al +ay) o= %(01 + 03)
In DPD, no interactions between bounded pairs are excluded, so the other parameters on this
line are ignored.

The DPD soft potential has the functional form

Vir)= 3(0—7)2 . (1)
It is specified by the new interaction type “3”, and the two parameters are (in this sequence)
o (in units of nanometre) and a [in units of kJ/(mol - nm?)]. To specify interactions between
two particles of type Cto be described by ¢ = 1 nm and @ = 5 kJ/(mol - nm?), you can use

[nonbond_par ans]
ccC 3 1.0 50

2. Readers new to Gromacs

The first line of a topology file should start with the line

[defaults]
1 3 no 10 10

The number “3” specifies the default combination rule while the other parameters on this line
have no meaning and are just needed for compatibility with Gromacs. For each particle, the
DPD interaction parameters a and o need to be specified later on in the topology file, and
the combination rule sets how the interaction between pairs of different particles should be
computed. (Of course, you can overrule this rule for certain pairs.). Instead of the number
“3” you can also specify “2” or “4”:

rule “2”: a = \/a1a2 o= %(01 + 02)

rle “3": 0 = /aa; 0 = /o102
()

rule “4”: a = 5(a1 +az) o= 5(01+ 02

After this, you need to specify the particle types that you want to use in your simulation:

[atomiypes]
a 5. 000 1. 000 A 40 00
Q 5. 000 2.000 A 40 00
a 5. 000 3.000 A 40 0.0

This defines three particle types, namely with the names CL, @ and C3. Each has mass
m = 4 u (u is the atomic mass unit) and is uncharged (final column). The DPD interaction is
of the form
a
V(r) =50 - r)?. ()
The second column specifies the parameter ¢ in units of nm, i.e., ¢ = 1 nm for all three
particle times. The third column specifies a in units of kJ /(mol - nm?).

The interaction between a pair of two particles, let us say, one of type Cl and one of
type @, is determined by the combination rule. With the default setting “3”, this would
give 0 = 1 nm and @ = /2 kJ/(mol - nm?). You can overrule this with an optional
[nonbond _parans] . For example, this will make the interaction between ClL and Q@
stronger and more long-ranged [¢ = 1.5 nm and a = 5.0 kJ/(mol - nm?)]:

[nonbond_par ans]
a e 3 1.5 50

The number “3” is needed for compatability with Gromacs and must not be changed.

In a similar way, parameters are specified for bonds between atoms, and for angular potentials:

[bondtypes]
a a 1 1.5 10.0

[angetypes]
acoa 1 120 2.0

The number “1” specifies harmonic potentials. No other potentials are currently implemented.
The last two numbers give the equilibrium bond length in nm and the force constant [in units
of kJ/(mol - nm?)], respectively the equilibrium angle in degrees and the force constant [in
units of kJ/(mol - degrees?)].

After that each molecule needs to be defined. Every particle in the simulation needs to belong
to a molecule. Even if the molecule consists only of a single particle, you still need to define
a molecule. The definition of a molecule starts with the name of the molecule.

[nol ecul etype]
SoneMbl ecul e 0

The number “0” specifies that no nonbonded interactions are excluded. For traditional MD
simulations, frequently the nonbonded interactions with the two or three nearest neighbours
are excluded. This is different for DPD simulations, and “0” thus needs to be specified here.

[atoms]

1 a 1 RES Al 1 0.0
2 Q 1 RES yivJ 2 0.0
3 Q 1 RES A3 3 0.0

The first field simply counts the particles in the molecule, and the second field give the particle
type, as defined further up in the [atomtypes] section.

The next two fields (1 and RES) technically speaking give the residue number and residue
name. This nomenclature was developed for proteins, where a single peptide molecule
consists of many residues (=amino acids). This nomenclature can be applied also to other
molecules, such as polymers, but this is basically only to make the files easier to understand
for humans — it does not make any difference for the program.

The only important thing to remember in this context is that it are the residue name and
residue number that appear in a . gro -file. The format string in Sec. IT A 2 called it molecule
name but actually it is the residue name. Hence, for the example, one has to use RES and not
SoneMbl ecul e

1IRS Al 1 2.000 7.000 1. 000

The fifth field in the topology file is the name under which the particle is referenced in the
.gro -file. Here, the names are thus AL, A2 and A3.

The last number on each line gives the partial charge of the particles. In the example, all
particles thus are uncharged. The number before it specifies the charge group and is ignored
for DPD simulations.

After all atoms are specified, you need to specify which particles are connected by bonds.
[bonds]

12 1
23 1

The first two numbers give the index numbers of the two particles, as specified in the
[atons] section. In this example, the bonds are thus AL-A?2 and A2-A3. The num-
ber “1” at the end of the line means that a harmonic potential is to be taken. The parameter
for the bond potential are taken from the [bondtypes] section further above. It is,
however, also possible to overrule those settings here:

[bonds]
12 1
23 1 25 100

The same then has to be done for angular potentials.

[agles]
123 1

This defines an angular potential that depends on the angle AL -A2 -A3 (as specified by the
first three numbers) and that is harmonic (as specified by the “1” at the end). Note that all pairs
of particles that are mutually connected need to have an entry under[bonds], otherwise
the result would be very strange. However, in many cases there will be no angular potentials,
e. g., when describing freely jointed polymers.

At this point in the file, all properties of the particles and the molecules are fully specified.
Now, all that remains is to decide how the system that you want to simulate, is composed.
First, you have to specify some title will be used as comment in some of the created output
files, but otherwise it has no function.

[system]
This is just sone nane that you like

The final thing that is left is to specify how many molecules of which molecule type should
be included in the simulation.

[nolecues]
Sonebl ecul e 10
D fferent Ml ecul e 5

The order in which the molecules are given here, has to be the same as the order of the
coordinates in the . gro -file.

C. MD parameter file (. nap)

The topology .top -file defines the potentials between the particles in the simulation, and
the coordinate . gro -file defines the initial conditions. The MD parameter file specifies what
should actually be done, like “run a simulation for so many steps at such a temperature...”.
This file consists of a number of lines of the form

par anet er = val ue

The order of lines in this file is irrelevant. DPDMACS supports the relevant parameter entries
from GROMACS, with a few extensions to treat the special needs of DPD simulations. We
will describe these extensions first, and will then describe the most important parameters
copied from GROMACS for readers new to this subject.

1. Extensions to the parameter file

tcoupl: [andersen —lowe]

Selecting andersen will active an Andersen thermostat that will at random times (as deter-
mined by tau _t) assign a random new velocity (as determined by ref _t) to an individual
particle.

Selecting | one will active a Lowe-Andersen thermostat that will at random times (as deter-
mined by tau _t) make a random transfer of momentum between a random pair of random.
The difference between these two thermostats is that the former is not momentum-conserving
whereas the second one is.

pbc: [xyz —no]
The defaultis Xyz and works precisely as in Gromacs. If no is chosen, there is a fundamental
difference to the way that Gromacs handles it. In DPDMACS, selecting no will make the

walls impenetrable, thereby allowing to simulate systems with surfaces. At a later stage, this
options might be extended to select which surfaces (x-y, z-z or y-z) should be impenetrable.

2. Important parameter entries for readers new to Gromacs

Basically every . ntlp -file will contain the following entries:

integrator = m
nsteps = 5000
d = 0.001

The first line selects that you actually want to run a MD simulation. In the second line, you
set the length of the simulation by setting the number of integration step. Each integration
step corresponds to the time set by the dt parameter, in units of picoseconds, so this example
runs a simulation for a total of 5 ps.

The computed trajectory will be written to a .trr trajectory file. The trajectory file can
contain the coordinates of the particles, their velocities and the forces acting on them. You
can select, every how many integration steps these three pieces of data are written:

nst xout = 100
nst vout = 1000
nstfout =0

The value O will disable the writing. In this example, the coordinates are written every 0.1 ps
(assumingdt = 0.001), the velocities are written every 1 ps, and the forces are not written
at all.

The simulation can also be thermostated. This means that the velocities of all particles are ad-
justed in such a way that a canonic ensemble is described. This can be done by the following
entries:

tcoupl = andersen
taut =01
ref t = 300

This selects the Andersen thermostat as means of thermostating. The target temperature is
300 K, and the typical time scale for approaching the target temperature is 0.1 ps.

